Hi Sobat Blogger, Saya Mengharap Atas Komentar Anda Terhadap Blogger MGT FE UD Kampus B Demi Perbaikan Blogger MGT FE UD Kampus B! Terimakasih Atas Perhatian Anda Terhadap Blogger MGT FE UD Kampus B! Wassalam.

Senin, 21 April 2014

Linier Programming (LP) Dengan Metode Simpleks Untuk 3 Jenis Barang

Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks.  Penentuan solusi optimal menggunakan metode simpleks didasarkan pada teknik eleminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim satu per satu dengan cara perhitungan iteratif. Sehingga penentuan solusi optimal dengan simpleks dilakukan tahap demi tahap yang disebut dengan iterasi. Iterasi ke-i hanya tergantung dari iterasi sebelumnya (i-1).
Ada beberapa istilah yang sangat sering digunakan dalam metode simpleks, diantaranya:

  1. Iterasi adalah tahapan perhitungan dimana nilai dalam perhitungan itu tergantung dari nilai tabel sebelumnya.
  2. Variabel non basis adalah variabel yang nilainya diatur menjadi nol pada sembarang iterasi. Dalam terminologi umum, jumlah variabel non basis selalu sama dengan derajat bebas  dalam sistem persamaan.
  3. Variabel basis merupakan variabel yang nilainya bukan nol pada sembarang iterasi. Pada solusi awal, variabel basis merupakan variabel slack (jika fungsi kendala merupakan pertidaksamaan ≤ ) atau variabel buatan (jika fungsi kendala menggunakan  pertidaksamaan ≥ atau =). Secara umum, jumlah variabel basis selalu sama  dengan  jumlah fungsi pembatas (tanpa fungsi non negatif).
  4. Solusi atau nilai kanan merupakan nilai sumber daya pembatas yang masih tersedia. Pada solusi awal, nilai kanan atau solusi sama dengan jumlah sumber daya pembatas  awal yang ada, karena aktivitas belum dilaksanakan.
  5. Variabel slack adalah variabel yang ditambahkan ke model matematik kendala untuk mengkonversikan  pertidaksamaan ≤ menjadi persamaan (=). Penambahan variabel ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel slack akan berfungsi sebagai variabel basis.
  6. Variabel surplus adalah variabel yang dikurangkan  dari model matematik kendala untuk mengkonversikan  pertidaksamaan ≥ menjadi persamaan (=). Penambahan ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel surplus tidak dapat berfungsi sebagai variabel basis.
  7. Variabel buatan adalah variabel yang ditambahkan ke model matematik kendala dengan bentuk ≥ atau = untuk difungsikan sebagai variabel basis awal. Penambahan variabel ini terjadi pada tahap inisialisasi. Variabel ini harus bernilai 0 pada solusi optimal, karena kenyataannya variabel ini tidak ada. Variabel hanya ada di atas kertas.
  8. Kolom pivot (kolom kerja) adalah kolom yang memuat variabel masuk. Koefisien pada kolom ini akn menjadi pembagi nilai kanan untuk menentukan baris pivot (baris kerja).
  9. Baris pivot (baris kerja) adalah salah satu baris dari antara variabel basis yang memuat variabel keluar.
  10. Elemen pivot (elemen kerja) adalah elemen yang terletak pada perpotongan kolom dan baris pivot. Elemen pivot akan menjadi dasar perhitungan untuk tabel simpleks berikutnya.
  11. Variabel masuk adalah variabel yang terpilih untuk menjadi variabel basis pada iterasi berikutnya. Variabel masuk dipilih satu dari antara variabel non basis pada setiap iterasi. Variabel ini pada iterasi berikutnya akan bernilai positif.
  12. Variabel keluar adalah variabel yang keluar dari variabel basis pada iterasi berikutnya dan digantikan oleh variabel masuk. Variabel keluar dipilih satu dari antara variabel basis pada setiap iiterasi. Variabel ini pada iterasi berikutnya akan bernilai nol.

BENTUK BAKU

Sebelum melakukan perhitungan iteratif untuk menentukan solusi optimal, pertama sekali bentuk umum pemrograman linier dirubah ke dalam bentuk baku terlebih dahulu. Bentuk baku dalam metode simpleks tidak hanya mengubah persamaan kendala ke dalam bentuk sama dengan, tetapi setiap fungsi kendala harus diwakili oleh satu variabel basis awal. Variabel basis awal menunjukkan status sumber daya pada kondisi sebelum ada aktivitas yang dilakukan. Dengan kata lain, variabel keputusan semuanya masih bernilai nol. Dengan demikian, meskipun fungsi kendala pada bentuk umum pemrograman linier sudah dalam bentuk persamaan, fungsi kendala tersebut masih harus tetap berubah.
Ada beberapa hal yang harus diperhatikan dalam membuat  bentuk baku, yaitu :
  1. Fungsi kendala dengan pertidaksamaan ≤ dalam bentuk umum, dirubah menjadi persamaan (=) dengan menambahkan satu variabel slack.
  2. Fungsi kendala dengan pertidaksamaan ≥ dalam bentuk umum, dirubah menjadi persamaan (=) dengan mengurangkan satu variabel surplus.
  3. Fungsi kendala dengan persamaan dalam benttuk umum,ditambahkan satu artificial variabel (variabel buatan).

Contoh Soal:

Selesaikan kasus berikut ini menggunakan metode simpleks :
Maksimum z = 8 x1 + 9 x2 + 4x3
Kendala :
x1 + x2 + 2x3 ≤ 2
2x1 + 3x2 + 4x3 ≤ 3
7x1 + 6x2 + 2x3 ≤ 8
x1,x2,x3 ≥ 0

Penyelesaian:

Bentuk bakunya adalah:
Maksimum z = 8 x1 + 9 x2 + 4x3 + 0s1 + 0s2 + 0s3 atau
                     z - 8 x1 - 9 x2 - 4x3 + 0s1 + 0s2 + 0s3 = 0
Kendala :
x1 + x2 + 2x3 + s1  = 2
2x1 + 3x2 + 4x3 + s2 = 3
7x1 + 6x2 + 2x3  + s3 = 8
x1,x2,x3 ,s1 , s2 , s3 ≥ 0
Solusi / table awal simpleks:

VB
X1
X2
X3
S1
S2
S3
NK
Rasio
Z
-8
-9
-4
0
0
0
0
S1
1
1
2
1
0
0
2
S2
2
3
4
0
1
0
3
S3
7
6
2
0
0
1
8
Karena nilai negative terbesar  ada pada kolom X2, maka kolom X2 adalah kolom pivot dan X2 adalah variabel masuk. Rasio pembagian nilai kanan  dengan kolom pivot terkecil adalah 1 bersesuaian  dengan  baris s2, maka baris s2 adalah baris pivot dan s2 adalah varisbel keluar. Elemen pivot adalah 3.

VB
X1
X2
X3
S1
S2
S3
NK
Rasio
Z
-8
-9
-4
0
0
0
0
S1
1
1
2
1
0
0
2
2
S2
2
3
4
0
1
0
3
1
S3
7
6
2
0
0
1
8
8/6
Iterasi 1
Nilai pertama yang kita miliki adalah nilai baris  pivot baru (baris x2). Semua nilai pada baris s2 pada tabel solusi awal dibagi dengan 3 (elemen pivot).
VB
X1
X2
X3
S1
S2
S3
NK
Rasio
Z
S1
x2
2/3
1
4/3
0
1/3
0
1
S3
Perhitungan nilai barisnya:
Baris z :
             -8         -9         -4         0          0          0          0
    -9 (  2/3          1         4/3       0          1/3        0          1 )   -
            -2           0          8         0           3         0         9
Baris s1 :
             1          1          2          1          0          0          2
     1   (2/3        1          4/3       0          1/3       0          1 ) -
            1/3       0          2/3       1          -1/3      0          1
Baris s3 :
             7          6          2          0          0          1          8
     6  ( 2/3        1          4/3        0          1/3       0          1 ) -
            3          0          -6         0          -2         1          2

Maka tabel iterasi 1 ditunjukkan tabel di bawah. Selanjutnya kita periksa apakah tabel sudah optimal atau belum. Karena nilai baris z di bawah variabel x1 masih negatif, maka tabel belum optimal. Kolom dan baris pivotnya ditandai pada tabel di bawah ini:

VB
X1
X2
X3
S1
S2
S3
NK
Rasio
Z
-2
0
8
0
3
0
9
-
S1
1/3
0
2/3
1
-1/3
0
1
3
X2
2/3
1
4/3
0
1/3
0
1
3/2
S3
3
0
-6
0
-2
1
2
2/3
Variabel masuk  dengan demikian adalah X1 dan variabel  keluar adalah S3 . Hasil perhitungan iterasi ke 2 adalah sebagai berikut:
Iterasi 2 :
VB
X1
X2
X3
S1
S2
S3
NK
Rasio
Z
0
0
4
0
5/3
2/3
31/3
S1
0
0
4/3
1
-1/9
-1/9
7/9
X2
0
1
8/3
0
7/9
-2/9
5/9
X1
1
0
-2
0
-2/3
1/3
2/3
Tabel sudah optimal, sehingga perhitungan iterasi dihentikan !

KESIMPULAN
Menurut penghitungan dengan metode simpleks, permasalahan diatas dapat diselesaikan dengan hasil optimal yaitu   X1 = 2/3 , X2= 5/9 dan X3 = 0 dan Zmax senilai 31/3. Dari hasil tersebut dapat diartikan bahwa X1dan X2 adalah produk yang dominan menghasilkan keuntungan senilai 31/3. Sedangkan X3 yaitu produk ini dapat diperoleh keuntungan yang minim atau standart. Hal ini di karenakan X3 tidak muncul pada iterasi yang ke dua atau iterasi optimal. Sedangkan keuntungan maksimalnya yaitu sebesar 31/3.
Catatan:
Perhitungan dalam simpleks menuntut ketelitian  tinggi, khususnya jika angka yang digunakan adalah pecahan. Pembulatan harus diperhatikan dengan baik. Disarankan jangan menggunakan bentuk bilangan desimal, akan lebih teliti jika menggunakan bilangan pecahan biasa. Pembulatan dapat menyebabkan iterasi lebih panjang atau bahkan tidak selesai karena ketidaktelitian dalam melakukan pembulatan.
Perhitungan iteratif dalam simpleks pada dasarnya merupakan pemeriksaan satu per satu titik-titik ekstrim layak pada daerah penyelesaian. Pemeriksaan dimulai dari kondisi nol (dimana semua aktivitas/variabel keputusan bernilai nol). Jika titik ekstrim berjumlah n, kemungkinan terburuknya kita akan melakukan perhitungan iteratif sebanyak n kali.

1 komentar:

  1. If you're attempting to lose weight then you certainly have to get on this totally brand new personalized keto diet.

    To design this keto diet, licenced nutritionists, fitness trainers, and chefs have joined together to develop keto meal plans that are effective, convenient, money-efficient, and delicious.

    Since their launch in January 2019, hundreds of clients have already transformed their figure and health with the benefits a smart keto diet can offer.

    Speaking of benefits; in this link, you'll discover 8 scientifically-confirmed ones given by the keto diet.

    BalasHapus

Saya Mengharapkan Saran & Kritik Yang Bersifat Konstruktif Untuk Perbaikan Blogger MGT FE UD Kampus B dan Materi Yang Ada di Blogger ini. WASSALAM !